首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   17篇
  国内免费   1篇
测绘学   4篇
大气科学   11篇
地球物理   111篇
地质学   139篇
海洋学   37篇
天文学   30篇
综合类   1篇
自然地理   17篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   7篇
  2019年   5篇
  2018年   17篇
  2017年   20篇
  2016年   17篇
  2015年   23篇
  2014年   20篇
  2013年   19篇
  2012年   22篇
  2011年   22篇
  2010年   26篇
  2009年   18篇
  2008年   31篇
  2007年   20篇
  2006年   4篇
  2005年   15篇
  2004年   7篇
  2003年   10篇
  2002年   7篇
  2001年   4篇
  2000年   10篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有350条查询结果,搜索用时 31 毫秒
91.
An extensive experimental program of shaking table tests on reduced‐scale structural models was carried out within the activities of the MANSIDE project, for the development of new seismic isolation and energy dissipation devices based on shape memory alloys (SMAs). The aim of the experimental program was to compare the behaviour of structures endowed with innovative SMA‐based devices to the behaviour of conventional structures and of structures endowed with currently used passive control systems. This paper presents a comprehensive overview of the main results of the shaking table tests carried out on the models with and without special braces. Two different types of energy dissipating and re‐centring braces have been considered to enhance the seismic performances of the tested model. They are based on the hysteretic properties of steel elements and on the superelastic properties of SMAs, respectively. The addition of passive control braces in the reinforced concrete frame resulted in significant benefits on the overall seismic behaviour. The seismic intensity producing structural collapse was considerably raised, interstorey drifts and shear forces in columns were drastically reduced. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
92.
HR 5235, better known as η Bootis, is a bright and well-known star for which very accurate observations have recently enabled Kjeldsen et al. (2003) and Carrier, Bouchy, and Eggenberger (2003) not only to confirm the presence of solar-like oscillations, but also to identify the excitation in the oscillation spectrum of several p-mode frequencies with harmonic degrees l = 0 – 2. Here we show how such observational success, through the calculation and the investigation of theoretical structure models and the comparison of the observed oscillation spectra with the predicted p-mode frequencies of oscillations, permits one to draw conclusions about the actual evolutionary state of this star and on the physical properties of its internal structure. The computation of the structure models is based on the use of updated global parameters and includes overshooting from the convective core. In particular, we consider the effect on the stellar structure, and hence on the theoretical frequencies, of employing different equations of state and different formalisms to describe the convective energy transport.  相似文献   
93.
Fluid–rock interaction was investigated in the inner aureole of the Late Miocene Monte Capanne pluton on Elba Island (Tuscany, central Italy) by integrating structural, petrological, fluid inclusion, and stable isotope analyses. In the north-western sector of the aureole (Procchio–Spartaia area), calc–silicates alternate with nearly pure carbonate layers at the metre scale. Close to the pluton, the prograde metamorphic sequence includes calc–silicates that transition within a few metres to overlying nearly pure calcite marbles. The calc–silicates are extensively metasomatised to form massive wollastonite-grossular-bearing exoskarn. The mineralogical assemblage found in the marbles and the unshifted carbon and oxygen isotopic ratios in calcite attest that the fluid phase was internally buffered. On the other hand, the calc–silicates constituted channels for infiltration of disequilibrium fluids of magmatic origin. Fluid infiltration was enhanced by hydrofracturing and structurally-controlled by existing planar anisotropies in calc–silicates (layering and lithological boundaries). At the metamorphic peak (∼600°C and 1.5–2 kbar), the marble–calc–silicate interface acted as a barrier to fluids exsolved from the crystallising intrusions, separating two different flow patterns in the inner aureole: a high fluid–flux region on its higher grade side (Wol-zone) and a low fluid–flux region on the lower-grade side (Cpx zone). Results of this study: (1) documented that fluid pathways in the aureole rocks at the top of the pluton were largely horizontal, controlled by the lithological layering and the pluton–host rock contact; and (2) elucidated the primary control exerted by the structural and rheological properties of the host rocks on the geometry of fluid flow during pluton emplacement.  相似文献   
94.
Deep-sea exploration is rapidly improving our understanding of volatiles geochemistry in mid-ocean-ridge igneous products. It is also placing greater constraints on degassing processes of the Earth’s mantle, with the result that degassing models based on vapour-melt equilibrium are no longer able to explain the increasing number of data. In fact, such models force to postulate an upper mantle strongly heterogeneous at any scale, and cannot account for the widespread carbon supersaturation of the recovered igneous products. Here we review the global He-Ar-CO2 dataset of fluid inclusions in mid-ocean-ridge glasses using the framework of advanced modelling of multicomponent bubble growth in magmas. We display that non-equilibrium fractionations among He, Ar and CO2, driven by their different diffusivities in silicate melts, are common in most of the natural conditions of magma decompression and their signature strongly depends on pressure of degassing. Due to the comparable Ar and CO2 diffusivity, magma degassing at low pressure fractionates both the He/Ar and He/CO2 ratio by a similar extent, while the slower CO2 diffusion at high pressure causes early kinetic effects on Ar/CO2 ratio and dramatically changes the degassing path. On this ground, the very different geochemical signatures among suites of data coming from different ridge segments mainly depend on the depth of the magma chamber where the melt was stored. Besides, the variations inside a single suite highlight variable ascent speed and cooling rate of the emplaced lava. The large variations in both the He/CO2 and Ar/CO2 ratios at almost constant He/Ar, displayed in glasses coming from the Mid-Atlantic Ridge 24-30°N segment and the Rodriguez Triple Junction, are therefore interpreted as a high-pressure signature. In contrast, the simultaneous increase in both He/CO2 and He/Ar of the East Pacific Rise, Pito Seamount and South-East Indian Ridge data sets suggests the dominance of low-pressure fractionation, implying that the shallow magma chambers are at a lower depth than those of the Mid-Atlantic Ridge 24-30°N and Rodriguez Triple Junction. Our conclusions support the presence of a relationship between spreading rate and depth of high-temperature zones below ridges, and are consistent with the depth of magma chambers as suggested from seismic studies. Non-equilibrium degassing explains the volatile systematics of mid-ocean-ridge basalts by starting from a single mantle-derived magma, dispensing with the supposed need for heterogeneities in abundance ratios of volatiles in the mantle below oceanic ridges.  相似文献   
95.
Thermal expansion has been measured by laboratory and synchrotron X-ray powder diffraction for end-member åkermanite (ak, Ca2MgSi2O7) and gehlenite (ge, Ca2Al2SiO7) in the range 20–1,500 K. In ak in the range 340–390 K, there is a negative linear thermal expansion in [001] direction. This is related to the phase transition from an incommensurate modulated structure (IC) to a normal one (N). The volumetric mean thermal expansion coefficients for ak and ge, obtained with a linear fit of the experimental data in the temperature range 298–1,400 K, are respectively 32.1×10–6 and 28.3×10–6 K–1 . The variation of the c/a ratio with temperature, due to different thermal expansion along the crystallographic axes, can be related to the different behaviour of the tetrahedral layers in the N and IC phases. Analysis of the variation of the superstructure peaks intensity across the phase transition confirms the tricritical behaviour of the IC/N transition in ak.  相似文献   
96.
Downward fluxes of labile organic matter (lipids, proteins and carbohydrates) at 200 (trap A) and 1515 m depth (trap B), measured during a 12 months sediment trap experiment, are presented, together with estimates of the bacterial and cyanobacterial biomasses associated to the particles. The biochemical composition of the settling particles was determined in order to provide qualitative and quantitative information on the flux of readily available organic carbon supplying the deep-sea benthic communities of the Cretan Sea. Total mass flux and labile carbon fluxes were characterised by a clear seasonality. Higher labile organic fluxes were reported in trap B, indicating the presence of resuspended particles coming from lateral inputs. Particulate carbohydrates were the major component of the flux of labile compounds (on annual average about 66% of the total labile organic flux) followed by lipids (20%) and proteins (13%). The biopolymeric carbon flux was very low (on annual average 0.9 and 1.2 gC m−2 y−1, at trap A and B). Labile carbon accounted for most of the OC flux (on annual average 84% and 74% in trap A and B respectively). In trap A, highest carbohydrate and protein fluxes in April and September, corresponded to high faecal pellet fluxes. The qualitative composition of the organic fluxes indicated a strong protein depletion in trap B and a decrease of the bioavailability of the settling particles as a result of a higher degree of dilution with inorganic material. Quantity and quality of the food supply to the benthos displayed different temporal patterns. Bacterial biomass in the sediment traps (on average 122 and 229 μgC m−2 d−1 in trap A and B, respectively) was significantly correlated to the flux of labile organic carbon, and particularly to the protein and carbohydrate fluxes. Cyanobacterial flux (on average, 1.1 and 0.4 μgC m−2 d−1, in trap A and B, respectively) was significantly correlated with total mass and protein fluxes only in trap A. Bacterial carbon flux, equivalent to 84.2 and 156 mgC m−2 y−1, accounted for 5–6.5% of the labile carbon flux (in trap A and B respectively) and for 22–41% protein pool of the settling particles. These results suggest that in the Cretan Sea, bacteria attached to the settling particles represent a potential food source of primary importance for deep-sea benthic communities.  相似文献   
97.
98.
99.
100.
Roman mortars were collected from the Villa dei Quintili in Rome, an archaeological site consisting of numerous edifices from nine construction phases dating from the 2nd century A.D. to modern times. A multianalytical approach was used on 34 mortar samples to infer the evolution of production techniques over time and to identify the source area of calcareous raw materials used in the preparation of the lime. Optical microscopy, scanning electron microscopy coupled with an energy‐dispersive system, and laser ablation inductively coupled plasma mass spectrometry were used to study the samples. The major and trace element data were compared with the compositions of two types of limestone samples (Calcare Massiccio and Calcare Maiolica) collected from the Cornicolani Mountains. The results suggest that the technological practices and the calcareous raw materials used for lime production remained unchanged over the time period considered (2nd century A.D. to 3rd century A.D.). The compositions of lime‐related particles in the mortars match those of Calcare Maiolica, which suggests its use as raw material for lime production. On the whole, the results are in agreement with data from existing literature regarding both the use by Roman builders of specific raw materials for the mortars’ production and the relative supply area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号